
Building a multiplayer space action game in


Florent Marchand de Kerchove

June 

Contents

 Rationale 

 Founding technologies 
.  standard . 

.. JavaScript . 
.. Canvas element . 
.. WebSocket . 

. Node . 

 Other works 

 Inner workings 
. Overview . 

.. e game’s rules and goal . 
.. e decentralized prototype 

. Client side . 
.. e rendering algorithm . 
.. Drawing inênity … and beyond 
.. Rendering performance . 

. Server side . 
.. Client-server communication 
.. Setting up the gamemap . 
.. e update loop . 
.. Handling collisions . 

 Future improvements 



Acknowledgments

Like any creative project, Spacewar was not conceived in a vacuum ; it is not the
product of any solitary mind cloistered from outside inëuences. To the contrary, it
was nourished by past experiences, discussions with friends and family, and exten-
sive readings. Even though it is our own, original work, we would like to acknowl-
edge of its most important contributors, be they direct or indirect.

e original idea for Spacewar was inspired by Slingshot by Jonathan Musther
and Bart Mak. Other inspirations were the eponymous Spacewar! conceived by
Steve Russel,MartinGraetz andWayneWitaenemon a - at in , and
Ambrosia Software’sEscapeVelocity series. Slingshotwas introduced tousby fellow
students AdrienBruyere, DavidDucatel andibautDemare. Having already toyed
with ships andWebSocket, seeing the gravity gimmick of Slingshot initially inspired
us to make a browser-basedmultiplayer version of it.

We would like to sincerely thank fellow hacker Merwan Achibet for continually
bringing new ideas to Spacewar and reêlling our motivation gauge. Your overnight
commits are always a joy to test and êx. Students who helped us play-test Spacewar
outside and during classes also deserve recognition, though itmight be in their best
interest to remain anonymous.

Spacewar was meant to be a side project, not our main semester project at uni-
versity. Due to the difficulties encountered with our initial project topic, we ended
up switching, all for the best. is of course would not have been possible without
the understanding of Cyrille Bertelle, our former project adviser, Claude Duvallet,
adviser for Spacewar, and Eric Sanlaville, supervisor of our university degree.

ese acknowledgments would not be complete without mentioning the au-
thors of the main tools and libraries we used to develop Spacewar. Mentionned in
the main text are the JavaScript language by Brendan Eich, CoffeeScript by Jeremy
Ashkenas, Node by Ryan Dahl, Socket.IO by Guillermo Rauch. e browsers we
use daily to run Spacewar are Firefox by Mozilla and Chrome by Google. e code
to Spacewar is managed with the distributed revision control system Git authored
by Linus Torvalds, and is remotely hosted at GitHub, which was created by Chris
Wanstrath, PJ Hyett and Tom Preston-Werner.

is reportwas typeset inAdobeUtopiausingX ETEXby JonathanKew. e fontspec
package byWill Robertson andKhaledHosnywasmost helpful in this endeavor. All
diagramswere createdwith the TikZ&  package by Till Tantau. Most of the tools
and librariesweusedareopen source, andwhilewementioned their initial authors,
we must not forget all of their contributors. We also need to thank Merwan again
for proofreading this report and providing us with enlightening advice.

Lastly, our êngers would like to thank  Emacs, for all the hours saved.



 Rationale

Creating a full-ëedged video game is an entertaining way to learn new languages,
new libraries, and tackle moderately challenging problems. emore complex the
game’s rules and features, the harder the problems to solve on theway. In Spacewar
for instance, the play êeld was initially a simple rectangular map. Rather quickly
however, running into the map borders was frustrating the players, thus the map
was changed to a torus. Having to wrap objects around the map is easy to handle,
but doing so seamlessly as to not distract the player requires more ingenuity. Once
you add collisions detection around the map borders, then the problem gets really
interesting.

Solving such problems in a game setting is satisfying because every time you do
so, you can jump into the game and enjoy a new feature or one less bug, leading to a
more enjoyable experience. Besides, some problemsmay lead to elegant solutions,
and those are rewarding on their own.

e idea behind Spacewar was to make an engaging multiplayer browser game
ina space setting, leveragingcurrentWebstandardsdevelopments. Beingabrowser
game, it follows a minimalistic design philosophy in order to accommodate the
short attention span of the medium. is minimalism is perceptible even in the
game pitch, which êts in one line:

“You are in space. Shoot other ships before they shoot you.”

Similarly, the graphics are voluntarily bare, as to let players focus on gameplay,
rather than fancy visual effects. is decision also bears the advantage of not requir-
ing strong graphical skills, whichwe do not possess. Furthermore, the space setting
can be used as an excuse for not having any sounds or music. ough it does not
imply that every aspect of the game can be justiêed by the physical laws of space.
is is still a video game, and one bereft of any pretension other than unadulterated
fun.

emultiplayer aspect of the game was justiêed by at least two reasons. Firstly,
playing a game with human opponents is more engaging than a solitary game, or
than a game played against computer AIs. Game AIs have a tendency to be pre-
dictable at best, and laughable at worst. While having a fearful AI in the game is a
very inspiring problem in itself, we wanted to entertain human players êrst. Since
designing the game mechanics and an AI at the same time could lead to compro-
mises in gameplay to êt the AI capabilities, we decided to favor the mechanics and
to take advantage of humans’ adaptability. e second reason to have multiplayer
was to get acquaintedwith theWebSocket protocol, part of theworking stan-
dard. is recent development of web technologies allows stable and efficient bidi-
rectional communicationbetween abrowser and a server over theprotocol. A



.

.

Figure : Spacewar action shot. Spaceships battle it out among planets, mines and
bonuses.

multiplayergame involves frequent communicationsbetweenclients and the server:
more than êfty updates are broadcasted to clients every second. erefore, a frantic
multiplayer gamewithWebSockets would stand as a strong testimony of the proto-
col robustness.

 Founding technologies

.  standard

e Web Hypertext Application Technology Working Group () has been
spearheadingweb technology innovation since , branching off theWorldWide
WebConsortium () to draft the speciêcationwhen thewas solely fo-
cused on  .. In , the  abandoned  . and reunited with the
 to formalize . While the speciêcation has yet to be ênished at the
time of this writing, some parts are stable and already implemented in most web
browsers. e canvas element Spacewar uses for drawing is such a stable part, but
theWebSocket protocol is still evolving. It is decidedly rewarding to work with such
fresh technologies and to follow the changes they are going through, as the lack of
documentationmeanswe have to look up at the speciêcation itself for information,
and at browser implementations as well for details.



.. JavaScript

JavaScript is the programming language of web browsers. Introduced by Netscape
for their Navigator, it started off as amodest scripting language used to enhance the
possibilities of web designers in the mid ’s. Although it became widely adopted
bywebsites, it was not overly popular with visitors who came to associate JavaScript
with cascading pop-ups windows and obnoxious animations. e language gained
recognition in recent years, with the advent of Ajax techniques and the maturity
of JavaScript frameworks and libraries such as jQuery, CommonJS, or Dojo. Most
websites todayuse JavaScript in a varietyofways: to addvisual effects to their design
(essentially animations for a more dynamic web), to enhance the site accessibility
(visual and oral clues to help visitors with disabilities), or to offer a more solid user
interface for web applications (illustrated bymost webmail providers).

Fifteen years after its inception, the language has grown to offer a wide array
of features, for professional and amateurs programmers alike. Some of those fea-
tureswere inspired by the Scheme language, notably êrst-class functions, weak typ-
ing and closures. e Self language was an other parent, providing the prototype-
based inheritance. Although both are idealistic, clean languages, JavaScript syntax
is akin to the C and Java family. A convenient choice, since those are still the most
popular programming languages, and their syntax is widely recognized by coders
of all backgrounds. One last prominent feature of the language is its capability for
asynchronous programming without explicit thread handling. Any function can be
scheduled for a later execution, without blocking the programëow. All threadman-
agement is handled behind the scene by the virtual machine running the program,
typically hosted by the web browser. is allows event-driven and concurrent ap-
plications to be easily written, since the facilities are built-in.

Still, likeeveryprogramming language, JavaScripthas itsdownsides. While some
are due to historical reasons, notably an initial implementation in ten days by its
creator, Brendan Eich, others are deliberate design choices. For instance, declara-
tion of global variables is implicit, which can be the source of insidious errors for
unaware programmers.

var foo;
function f() {
foo = 1;
bar = 2;
// do something with foo and bar

}
f(); // foo is 1, bar is 2

In this code snippet, foo is a global declared in the global scope, but bar is also
a global, although implicitly declared in the scope of f. Another quirky language



feature is due to the “==” and ”!=” operators which, like in , do implicit type co-
ercion. On top of being inefficient (strings have to be converted for numbers and
vice versa), this coercion voids the transitivity of equality. e following example
illustrates this problem:

"" == 0 // true
0 == "0" // true
"" == "0" // false

Fortunately, strict equality (and inequality) operators are also provided and be-
have rationally.

In light of these peculiarities, seasoned JavaScript programmers established a
guideline of recommended JavaScript style which emphasize clear and safe pro-
gramming practices []. Popular frameworks also tend to enforce these practices
and have their users follow them in order to avoid errors that are hard to track. An-
other solution to alleviate these downsides is to use another syntax that compiles
directly into JavaScript, bypassing the error-prone features.

CoffeeScript is a language by JeremyAshkenas [] that does just that. It compiles
directly into JavaScript without any overhead at run-time. CoffeeScript borrows
its syntax from Ruby, another popular programming language in the web develop-
ment community. is syntax is characteristically clean: parentheses are optional,
and indentation delimit blocks instead of accolades. In addition, CoffeeScript pro-
vides syntactic sugar for idiomatic operations like iterating over an object proper-
ties, array comprehensions, and lambda function declaration. Consequently, Cof-
feeScript code ismore expressive than the operationally equivalent JavaScript code,
and time is saved both when programming and reading CoffeeScript code.

Even though Spacewar began by using JavaScript, the decision to switch to Cof-
feeScript was easy to make for all the preceding reasons.

.. Canvas element

e canvas  element [] is an important part of . It was initially created
by Apple for Safari and theMac   Dashboard, but is now implemented in all the
major web browsers ¹.

e intent is to provide an area onwebpages uponwhich todraw freely, as an al-
ternative to vector graphics provided by  (Scalable Vector Graphics). While 
already allowed scripted animations to be run freely on web pages since its initial
release in ,  images have to be inserted into the  tree, and this can be
a signiêcant computation overhead if many  images are inserted and removed
from the  tree. When fast animations are required, this overhead is unaccept-
able. Being a single  element, the canvas provides a potentially faster way to

¹By major web browsers wemean Firefox, Chrome, Internet Explorer, Safari and Opera.



draw animation than . But these two graphics solutions are not interchange-
able.

First, the canvas element is bitmap-based. is means that graphics drawn on
the canvas are resolution dependent, whereas  animations are freely scalable.
Bitmap graphics are faster to process, thus well suited to animations that require
a high number of frames every second, like games. Scalable graphics are great for
everything else, since their image quality do not degrade when scaled at any size.

e canvas element also has the ability to use a d rendering context calledWe-
bGL [], enabling OpenGL applications to be embedded in web pages and ren-
dered using a software OpenGL implementation, or even a hardware implemen-
tation if the proper driver is present. Implementations of this d context in major
browsers is ongoing. e latest Firefox, Chrome, Safari andOpera browsers support
WebGL, but not on all platforms. Besides, since calling the  driver directly can
lead to crashes unrelated with the browser itself (caused by faulty drivers or poor
graphics management in the OS), WebGL support can be deactivated by default in
some browsers, or for unsupported hardware. Nonetheless, some demonstrative
applications already exist, with themost impressive beingports of famous d games
like a Quake  level loader [] or an interactive êlm by Chris Milk [].

Finally, should web applications using the canvas element require even more
processing power for their animations, major browsers are beginning to provide
hardware acceleration even for the d drawing context. is is also optional and
enabled client-side, due to the stability issues mentioned above, but still is a nice
option to have when high performance is a concern.

e consequence of providing all those facilities to web scripts, both versatile
with  and powerful with the canvas element, is the diminishing need for propri-
etary alternatives like Adobe Flash orMicrosoft Silverlight. A few years back, Adobe
Flash was the de facto standard for web animations. Today, with browsers adopt-
ing  standard and especially the canvas element, animations can both be fast
and portable. Furthermore, the speciêcation is fully open, as are implementations
in most browsers.

Spacewarmakes full use of the canvas element. All the game is currently drawn
on it, and it êlls the entire web page. Some  images are also used for the more
static conêgurationmenu.

.. WebSocket

e major part of Spacewar is its multiplayer aspect: having multiple players par-
ticipating in the same game, each using a different browser on their own computer.
is is enabled by the introduction of WebSockets to .

e  protocol was conceived as a unidirectional protocol: from the client
to the server. e server can not initiate an unsolicited connection with a client,



and is only allowed to send data to the client in response to a previous request from
the client. Yet, asynchronous updates from the server have become amajor part of
today’s web browsing. e usual solution is to abuse the protocol in part, by having
the client frequently poll the server for updates. Typically, the client would send
a request to the server every two seconds, and the server would respond with up-
date data, or with an empty response if no update occurred. is is a simple way to
provide the illusion of asynchronous updates, but it comes at a price.

To receive update in a timely fashion, the polling frequency should be short,
around êve seconds. is means that every êve seconds, a  request is sent to
the server, and a response is received. Sending a new  request requires estab-
lishing a  connection with the server, and that in turn takes some round trips
between the client and the server. In addition, the request and response have to
contain  headers that add to the packets’ size, though the information they
transmit is mostly the same each time. is short polling technique is thus very
inefficient, as not only time is wasted by setting up a full  communication each
time, but bandwidth is also squandered.

To alleviate these problems, more reêned techniques have come to light. e
twomost commonmechanisms are known as  long polling and  stream-
ing. Both are described in   []. As the name implies, long polling consists
of sending a request to the server, who will delay its response until there is data to
transmit. When the client receives the response, it immediately sends anew request
for the next update. In  streaming, the server sends its response in parts, thus
keeping the connection with the client alive, until its renewal after a set amount
of time. While more efficient than short polling, both have disadvantages over a
straightforward  socket. When renewing the long poll request or stream, mes-
sages can not be sent from the server, and must thus be buffered until the connec-
tion is established. Other difficulties may arise when intermediaries (proxies, gate-
ways) are present between the client and the server, as theymay decide to cache the
server responses, thus defeating the mechanism. Best practices for implementing
these techniques are described in the .

A better solution is to augment the  protocol, allowing true, persistent bi-
directional communicationwithoutmuchoverhead. at is precisely thehigh-level
description of the WebSocket protocol []. is protocol consists of establishing a
 connection between a client and a server, allowing two-way message passing
after a  handshake part. Using the  request/response model, both client
and server acknowledge of a “ upgrade” to use the WebSocket protocol. Once
they agree, messages can be freely sent between both entities until the connection
is closed. In addition to the  connection, theWebSocket protocol provides other
features. To quote the protocol draft:

• a Web “origin”-based security model for browsers;



• an addressing and protocol naming mechanism to support multiple services
on one port andmultiple host names on one  address;

• a framing mechanism on top of  to get back to the  packet mechanism
that  is built on, but without length limits.

eWebSocket protocol enforces the sameorigin policy commonly used inweb
browsers. Basically, WebSockets established between a browser and a web server
at http://www.foo.com/ can only be accessed by scripts running for a page from a
server with the same domain. Scripts from other domains do not have legitimate
access to resources (scripts, sockets) of others.

eWebSocket API [] offered to web browsers scripts is rather straightforward,
and event-based. In simple setups, the client only has to create a WebSocket ob-
ject, then registers function callbacks for the following events: connection open,
message received, connection closed. is WebSocket object can be used to send
messages to the server, and to close the connection. Messages can either be sent as
- strings or as raw binary.

. Node

Obviously, WebSocket support is required both on the client and on the server. On
the client side, a check may be done when the game script executes to detect Web-
Socket support in the browser, and act accordingly. On the server front, the choice
is more limited. e early prototype of Spacewar used a  implementation of
the WebSocket protocol on the server. Back then, the server was only used to pass
messages around between clients. All the game logic was handled by the clients
themselves, and each client sent its state to all the others, via the server. It quickly
became clear however that this  implementation of WebSocket was meant for
trivial demonstrations purposes, but not for real applications.

As a result of theWebSocket protocol being recent andnot ênalized, thenumber
of implementations available outside of web browsers is not overwhelming, though
sufficient. Although theprotocol is not overly complicated, implementing itwasbe-
yond the scope of Spacewar. Besides, due to security concerns, the protocol is still
evolving. An implementation that can stay up to date with current and future ver-
sions of the protocol is preferred. is essentiallymeans that the chosenWebSocket
implementation should be popular enough to ensure that it will be supported until
at least the protocol ênalization. A rapid search indicates there are already quite
a few implementations for C, C, Java, Ruby, JavaScript, and more. e JavaScript
implementation is of particular interest, and was chosen for reasons we will now
expose.



http://www.foo.com/

First and foremost, since JavaScript was required for programming the client,
having it as the server language helps promoting code reuse and consistency. e
code is clearer as a result, since some client constructs are mirrored on the server.

Secondly, the chosen JavaScript implementation of the WebSocket protocol is
actually a module for a high-performance server software running JavaScript code,
called Node (or node.js) []. At the core, Node is an abstraction of asynchronous
I/Owith a layer of web-oriented networking facilities designed for building scalable
web servers. Under the hoodNode is running Google’s V JavaScript engine, which
allows users to program all their server code using only JavaScript, although Node
itself is essentially made in C++.

With the growing number of Internet users, it is not uncommon for web hosts
serving popular content to handle amillion ormore daily hits, and a hundred thou-
sand of simultaneous clients. Against such numbers, very efficient server software
(and hardware) is required. ere are three main approaches for serving content
at this rate in server software: caching, multithreading and asynchronous (non-
blocking) I/O. Caching is very useful for static content, but not for a highly dynamic
application like Spacewar. While allocating a thread for each client (or a group of
clients) and retrieving content with blocking I/O in each thread is feasible, imple-
mentations of threads in most systems makes this solution sub-optimal. For one,
managing ten thousand threads can become quite complex. In addition, the costs
of thread allocating, context switching and scheduling hamper this method’s scal-
ability.

On theotherhand, asynchronous I/O is rather straightforward: insteadof spawn-
ing a new lightweight process (thread) to read and send a êle to the client, just wait
for the system to signal the êle readiness, and execute a callback function to read
and send it. e cost of handling one more client is much lower than for mul-
tithreading, although not all non-blocking I/O mechanisms in the OS are equal.
Hardware interrupts are favored, butmightnotbeavailable, inwhichcase the slower
method of polling is used. Nonetheless, non-blocking I/O has garnered a strong
following in the web development community, assessed by the popularity of server
software like Python’s Twisted, or Ruby’s EventMachine. is is explained partly by
the popularity of the language they are implemented in, partly by the performance
they provide, and mostly by the convenience of their event-driven model for pro-
grammers.

Since all theworkwith asynchronous I/O is done in callbacks, this directly trans-
lates into programming for events, a recurrent pattern of web programming. For
instance, an  server will have a function to handle a request event. Every re-
quest sent to the server will wake up Node, trigger this function, and send Node to
sleep once the function has returned. Itmust be noted that since no threading is in-
volved, the callbacks execute sequentially rather than concurrently. In particular,



callbacks that are slow to return will become a bottleneck for the server scalability.
Nevertheless, the event-driven approach is quite êt to the  request/response
model, as well as other network applications.

Node also aims to be verymodular: even core features are provided asmodules
lazily loadable in a server program. e WebSocket protocol is available in Node
thanks to suchmodules. Spacewar uses the one named Socket.IO []. While other
modules expose the bare WebSocket protocol in Node, Socket.IO can fallback to
other protocols (like Ajax,  long polling or  streaming) if the client has no
support for WebSocket. is is highly convenient, given the discrepancies between
browsers as well as between a different versions of the same browser.

 Other works

Spacewar arose from our want to design and play a space action game leveraging
modern web technologies. Outside of the gravity gimmick inspired by the open
source game Slingshot [], there was no direct inëuence by other works until we
took a peek at what was available.

Eerily enough, the space setting seems to be popular, as at least two games built
with JavaScript andNodebear the samepremises. eêrst one is Lazeroids [].at
gamewas initially conceived using Ruby onRails over aweek-end competition, and
later ported over to Node. e gameplay is a voluntary homage to the classic 
arcade game Asteroids where a lone spaceship êres round-shaped bullets at dan-
gerously concave asteroids drifting in the otherwise empty space. Lazeroids allows
multiple players to play in the same world and features a score board. Attacking
other players did not seem to work right when we tried it, and the gameplay also
feels dated, with reason. Still, onemust keep inmind that Lazeroids was conceived
as a demonstration of Ruby on Rails and  capabilities over a -hours period.

e second space-inspired browser game is Rawkets []. Here the focus is on
player versus player combat, as there are no other interactions with the world. e
êghting stage is delimited by a thick rectangular wall, and the combat is very ba-
sic. Ships êre bullets that go straight ahead dealing damage to the êrst target hit.
Ships can sustain some damage before exploding, and recover damage over time.
e graphics are elementary, except for the somewhat fancy static background and
interface. ere are even sound effects and a background music ². Like Lazeroids,
Rawkets primary purpose is to demonstrate the capabilities of  and Node in
the fun setting of a multiplayer space êghting game.

²Rawkets uses Adobe Flash for sound. Although the  standard introduces an audio API,
browser implementations might have been lacking when Rawkets was conceived.



 Inner workings

. Overview

.. e game’s rules and goal

As previously stated, the intent in building Spacewar was to becomemore comfort-
able with standard and future web technologies, by creating a simple, yet engag-
ing multiplayer game. e core gameplay revolves around shooting spaceships in
space, with the added twist of compensating for the surrounding planets’ gravity
that draws spaceship êre.

Browsing to the game server  immediately jumps the client into the game.
Each player controls exactly one ship. e commands are simple: ships can rotate
left or right, thrust forward, êre a bullet or use a bonus. Ships are brittle: one hit is
all it takes to destroy them. Obstacles are plenty: planets, bullets, other ships, and
lethal bonuses. e bright side is that dying bears no in-game penalty aside from
losing any held bonuses, as hitting the spacebar immediately spawns a new ship.
Hearing the opponent gloat over his victory is punishing enough.

e action takes place on a rectangular map wrapped at the edges, effectively
simulating a torus. A plain rectangular map with border walls is not symmetric:
corners are notably disadvantageous for players who wander in them, since it is
much harder to escape from them. e central area will thus see most of the ac-
tion. A torus is symmetric action-wise, as all area have the samemobility. e toric
map is harder to handle though, especially when considering collisions at the map
borders, or when drawing it seamlessly in the client.

emap is populated with immobile planets, which have two roles in the game.
First they act as obstacles for players, as a ship colliding with a planet will imme-
diately turn to sidereal dust. Players can not blindly go forward, but must learn to
maneuver skillfully between cluster of planets in order to survive. Secondly, planets
affect the trajectory of bullets êred from the spaceships. Each planet has a gravity
parameter proportional to its radius, and bullets are subject to every planet gravity
êeld. Larger planets pull harder on bullets, eventually crashing them on their sur-
face. Players have to learn how bullets react to gravity, as it is crucial to improve
their aim but also to better dodge other ships’ bullets.

e game has no explicit goal other than enjoyment. Adding some kind of scor-
ing system, based on the number of ships destroyed and length of survival would be
trivial, but whether this is effectively beneêcial to the game experience is still unde-
termined. e core formula has proved to be satisfying enough for the time being.

ebonusesaddvariety to thegame, by introducingnewobstaclesandweapons.
New bonuses are regularly dropped onto the map, staying at their location until a
ship picks it up by ëying over it. Ships can only have one bonus at a time. Flying



over a bonus when already holding one will replace it. Once picked up, a bonus
can be used until it has no more charges. Most bonuses currently implemented
have only one charge. Bonuses are not deênitive, and need testing to determine if
they have their place in the game. e upside is that bonuses are easily added and
removed from a game for test purposes using parameters. Player feedback can be
used to increase or decrease the probability of a certain type of bonus appearing.
Ideally, these parameters could be altered even during a game, matching the in-
terests of current players. e most successful bonus so far is the mine, immobile
when placed on the map, but which explodes when a ship or a bullet enters its de-
tection radius. esemines are a useful to dispose of tailing opponents, or to set up
traps in tight planet clusters.

.. e decentralized prototype

Spacewar is divided into a client and a server program. Both are written in Coffee-
Script, compiled to JavaScript before being run. e client program is intended to
be executed inside a web browser supporting the  canvas element. e server
must be run by Node with additional modules installed.

Historically, the initial prototypeofSpacewarwasmeant toworkwithouta server.
e client handled all the game logic simulation, in addition to drawing, and one
could play the game even if a server was not available. On the other hand, if a server
was running, then clients would send it their position and bullets, and the server
would broadcast them to all other connected clients. e server thus acted as a
mere relay.

is decentralized model had its merits: clients could play without a server,
nearly all computation was offloaded to clients, thus greatly alleviating the server
load, and the server was truly scalable, able to handle many clients since its only
role was to coordinate packets between clients. But this approach was not devoid
of problems. e êrst one was the game state synchronization across all clients.
Since all clients ran their own game logic and only sent updates concerning their
own actions, the game state was different for each one ; there was no authoritative
state as in a centralized model. is allowed asymmetric situations to arise, where
a ship would be dead for some clients but not for others. Although this might have
been solvable, by acknowledging collisions between entities for affected clients for
instance, the far greater issue of cheating remained.

One thing to keep in mind with secure web development that also applies to
games, is to never trust the client. e client, when given the chance, will always try
to exploit any ëaw to gain advantage. In a game setting, this amounts to cheating,
which ruins the game experience for everyone else involved. is is not to say that
all clients should be regarded as evil exploiters, as most are not, but care should be
takenas tominimize, andevenannihilate the risks. If by anymeans someone is able



to gain an unfair advantage, then, given enough time, someone will. Manipulating
the game code is made even easier with JavaScript browser games: no decompila-
tion is necessary as all the code is interpreted and embedded in the web page. With
this in mind, letting clients make unilateral game decisions is ripe for exploits. In
the Spacewar prototype, clients could easily change the ship maximum speed, to
move faster than other players and gain advantage. e sole answer is to check all
data received from clients, and drop faulty packets.

Again, cheating is avoidable, game state synchronization is doable, but com-
plexities and subtleties quickly arise when trying to solve both problems. e cen-
tralizedmodelof a gameserverhandlingall game logic andbroadcasting it to clients
is far simpler to design. e choice was thus made early to switch Spacewar to this
centralizedmodel, at the cost of losing the ability for clients to playwithout a server,
and greatly diminishing the scalability, but working as expected.

. Client side

e client program has two roles:

• It gathers keyboard input from the player and forwards them to the server.

• It receives updates from the server and renders the game to the canvas.

In a way, the client can be thought of as a terminal with a fancy interface.
First, it has to establish the connection to the server. is amounts to creating

theWebSocket, andwaiting for the connected event. When this event is received, it
contains an id number used to identify the client, which the client saves. en, the
client’s preferences (nameand color of ship) are sent, if any, and a ship is requested.
Oncenotiêedof the shipcreation, thegamerender loop is started, and theclient can
play.

From then on, every time the client hits or releases a key, amessage is sent to the
server. Knowing which keys each client has pressed, the server updates each ship
accordingly when going through its own update loop. When any entity of the game
world changes, the client receives amessage containing the new values to synchro-
nize its local state with the server state. e client is only told what it needs to know
in order to draw the game world correctly. Information unneeded for drawing is
never transmitted. Simultaneously, the rendering loop displays the game world to
the player, centered around its ship.

.. e rendering algorithm

Drawing the game is the main role of the client, and the most expensive in com-
puter time. All drawing takes place on the  canvas element, using the d ren-
dering context. e canvas is stretched to êll the client’s whole window, adapting



to eventual resizing events, thus maximizing the player’s view. To ensure smooth
rendering, the scene is requested to be drawn at  frames per second. is is only
a request: clients will do their best to reach this frequency, but under-performing
clients might not reach it. In this case, the rendering will be choppy, and playing
might become difficult, or even unsatisfactory. Efforts should thus be made to en-
sure most computers can draw the game fast enough to allow a smooth play. Opti-
mization comes after correctness however, and since Spacewar is not feature com-
plete at this stage, busy action can lead to slowdowns on even recent hardware.

e rendering loop algorithm is very similar to the following code:

redraw = (context)−>
context.clearCanvas()

Center view around the player's ship.
centerView()

Draw all objects.
for obj in gameObjects
obj.draw(context) if obj.inView()

Draw all visual effects.
for e in effects
e.draw(context) if e.inView()

Draw outside of the map bounds.
drawInênity(context)

Draw user interface.
drawUI(context)

We start by clearing thewhole canvas, which contained the previous frame. is
is needed since the scene is centered around the player, thus every object in view
has to be redrawn every time the player moves. On this blank canvas, the game
is drawn in layers. Each layer is drawn atop of the previous one, and any drawing
done in a layer obscures the drawings done at the same place in lower layers. e
êrst layer contains every game object (ships, bullets, planets, bonuses). e second
layer is êlled with cosmetic effects that are tied to a particular object and exist only
on the client. Ship explosions are the only effect present so far. e ênal layer is
used for the user interface: radar symbols drawn at the window’s edges to indicate
other players and incoming bonuses that are out of view. e drawInênity method
warrants a deeper explanation.



.. Drawing inênity … and beyond

epurposeof thedrawInênitymethod is to render the toricmap to theplayerby re-
drawingeachvisible object outsideof themapedges. WithoutdrawInênity, a player
near an edge of themapwould not see the objects beyond the edge until he crosses
it and is wrapped around on the torus. ismethod helps to create a seamless tran-
sition when wrapping around the edges. e following diagram illustrates this.

.

.Map.Canvas .drawInênity

Figure : e effect on drawing the map on the canvas with the drawInênity
method. Without drawInênity, the canvas has blank areas when the player is near
themap edges. With drawInênity, the whole canvas is êlled with copies of themap,
seamlessly rendering the torus.

On êgure , the game screen is shown without calling drawInênity (left-hand
part), then with calling drawInênity (right-hand part). Without drawInênity, the
visible part of the game map is drawn at the right of the canvas, leaving the area
outside of the map blank. Since the map is a torus, there can not be any undrawn
part on the canvas. Here the left part of the canvas should show the rightmost area
of the gamemap, the top part should show the bottom of the map, and so on. at
is precisely what the drawInênity method does: it redraws the map at the edges of
the originalmapby translating it. emethod collects the edges currently visible by
the player and draws the map for each one. e results are witnessed on the right
of êgure , where the map is cloned to êll the whole canvas.

While this drawing method ensures the world is correctly rendered as a torus,
there are additional details to take care off. First, all objects should behave accord-
ingly to the toric condition of the map. at is the server’s role when updating the
game world. For instance, bullets should wrap around and be affected by the grav-
ity of all surrounding planets, even planets that are beyond themap edges. Another
example is given by the planets: they should not overëow the map when created,
otherwise they would be rendered as overlapping another planet from the other
side of the map, which is not allowed. Last but not least, the radar that is used to



show other players’ ships and incoming bonuses that are out of view must select
the nearest target among all the “ghosts” of an object, those mirror images drawn
by the drawInênity method. When the player’s ship is near the left border of the
map, and another ship is near the top right corner, the radar should indicate the
shortest route to the target, which is realized by going left and up, wrapping around
the edges, rather than traversing the whole map by going to the right (êgure ).

.

.Map

.Enemy.Ghost

.Canvas

Figure : Finding the nearest ”ghost” in all clones of the map. Here the player is
the blue dot at the canvas center, and the enemy at is at the top right corner of the
map. Since the map is a torus, the quickest route to the enemy is by going left and
up, toward the enemy ”ghost”. e player radar always indicates the nearest ghost
rather than real map position.

.. Rendering performance

Drawing to the canvas at  frame per second, even in d, can tax even recent hard-
ware. Speeding up this step is beneêcial to gameplay, as smooth rendering is es-
sential to fast paced action-oriented games. While we prefer to avoid premature
optimization, some has already occurred and bore great beneêts.

eêrst optimization is avoiding todrawobjects that areoutof view. Eachobject
is drawn only if it can be seen by the player, within the bounds of its screen (there
is no line of sight restriction). is saves  cycles, as even if a pixel would not
be rendered to the screen, browsers still take time doing operations on it. at is
because the canvas element can be drawn upon even if it is not attached to the 
tree, saved for later purposes. Since the map can be vastly larger than the player’s
view, and full of objects rather costly to draw, this check is judicious.

e second optimization is avoiding to redo costly operations that can be saved.
Planets are immobileobjects thatnever change their shapeorcolorduring thegame.
eyare alsonumerouson themap, thus rather costly todraw, even though they are
represented by bare discs. By drawing each of them only once to a devoted canvas,
we can later draw this hidden canvas onto the real canvas presented to the player at
a lower computational cost. Drawing to a hidden surface beforehand and applying
this surface to the game canvas like a stamp is a cornerstone technique of d game
programming called spriting.



ese optimizations already proved their worth by stabilizing the framerate, but
it must be noted that the low-level tweaking common in video game programming
is restricted in this setting. e programmer has only access to the canvas, and the
browser is in charge of the lower-level operations and interaction with the graphic
capabilities of the client’s machine. While tuning for speciêc browsers is feasible,
tailoring the game to the features offeredby aparticular or is beyond reach.
is is the cost of using a scripting language running inside a browser. Luckily,
implementers of the canvas element are committed to minimize this cost. For in-
stance, Gecko (used by Firefox) WebKit (used by Chrome and Safari) engines and
the latest Internet Explorer provide optional hardware acceleration of the d ren-
dering context. In addition, they include an implicit double buffering of the canvas:
drawing operations are done off-screen and the canvas is refreshed only oncewhen
the script is donedrawing the frame. is is quicker than refreshingat everydrawing
operation.

. Server side

e server program is where the game actually resides, where game logic, collision
detection, collision resolution, and synchronization between clients arises. As pre-
viously stated, the server is written in JavaScript (compiled from CoffeeScript) and
run in a Node environment.

Before launching the actual game server, some preparations are in order. First,
a  server is started to serve the client êles. e second step is to bind theWeb-
Socket to the server, listening for aupgrade request initiated by the client
program. Finally we setup the callbacks for the client connection, disconnection
andmessage events, initialize the gamemap and then launch the game loop.

.. Client-server communication

When a client connects to the server, a player id number is established, an associ-
atedplayer object is created server-side, then the client is notiêedof the connection.
Following that, the client should request a ship, in which case the server will create
the ship and send a full gameupdate to the client containing all gameobjects. Once
this is done, the client can play.

During the main course of the game, the only messages received by the server
from clients are input related. Pressed and released keys are sent to the server,
which updates the corresponding player object.

In the event of a client disconnection, be it voluntary or accidental, other clients
are notiêed and resources are freed.



.. Setting up the gamemap

To initialize the map, its dimensions are êrst retrieved from the preferences êle.
is êle contains constant values used throughout the game simulation which can
be customized to tune the game mechanics. For example, the preferences êle de-
scribes the maximum allowed ship speed, the intensity of the gravity effect on bul-
lets, and the activation time of mines.

Once the map size is known, we must populate it with planets. e number
of planets to place and their radius range is also loaded from the preferences êle.
en each planet is randomly put on themap, provided that it does not overlap any
previously put planet. ere is a chance for each planet to have an accompany-
ing satellite. When this happens, the total radius of the system is taken into account
when checking against overlaps. Satellite size, rotational speed anddistance to host
planet are all parameters in the aforementioned êle.

.. e update loop

emost run code on the server is the one called by the update loop. Similarly to
the client drawing loop, the server update loop is run at a high frequency: every
 milliseconds, which translates to  updates per second. e client and server
update loops do not have to be synchronized, since there will always be an added
network latency between them. e server should update very often though, to be
able to quickly respond to user input.

Let us have a look at the (abridged) update loop:

update: ()−>
Process input from players.
for id, player of players
player.update()

Move all objects and update their grid position.
for id, obj of gameObjects
obj.move()
if obj.tangible()
placeObjectInGrid(obj)

Check and handle all collisions between objects.
handleCollisions()

Let objects update and record their changes.
allChanges = {}
for id, obj of gameObjects



obj.update()
allChanges[id] = obj.changes()

Send only the changes to all clients.
socket.broadcast
type: 'objects update'
objects: allChanges

e êrst step is to process the input of each player. Spacewar requires only êve
keys:

• Up arrow to thrust forward,

• Left and right arrow to rotate,

• Spacebar (or A) to êre,

• Z to use the carried bonus.

e client sends its keys to the server which saves them for this update purpose.
When processing each player’s input, the server only has to check whether a key is
pressed to update the player’s ship accordingly. For example, if the left arrow key is
pressed at the time the server enters the update loop, the ship’s facing angle will be
decreased ³.

e next step is to update all objects. is is divided into three parts: êrst ob-
jects are moved, then all collisions between objects are checked and handled, and
ênally objects have their state updated. With this division, objects can post-process
collisions in their update method instead of requiring a separate method with du-
plicated code. Moving all objects is simple: the position is updated with respect to
the object velocity. e only subtlety is to wrap around the map edges. Some ob-
jects like planets and bonuses do not ever move. Bullets are of interest since they
are affected by gravity from planets: a Newtonian gravity formula is applied to the
bullet acceleration vector for every planet around.

Oncepositions are updated, objects are placed in a grid used to check collisions.
Wewill cover collisions in further details in ... After collisions are processed, the
state of each game object is updated. In this step, objects can update anything not
related to position, which is handled in the position update. For example, mines
grow their detection radius and satellites increase their rotation angle.

Most objects will have their state changed as a result of these steps. Moving
changes the position vector, mines change their hit radius at each update, ships

³e origin of the HTML canvas element is at the upper left corner, with x increasing to the right
and y increasing to the bottom. Consequently, angles of the unit circle increase clockwise instead of
conventionally increasing counterclockwise.



and bullets can die after hitting another object, etc. Clients should be notiêed of
all these changes, but there is no need to transmit êelds that have not been mod-
iêed. Full game objects are already sent to the client at connection time. Further
updates only transmit the changes to avoid wasting bandwidth and unnecessary
serialization. For this purpose, all game objects have the possibility to mark êelds
to be watched for changes. Changes to thesemarked êelds are recorded into a ded-
icated object that is gathered in the update loop by calling obj.changes(). When
changes from all objects are obtained this way, clients are notiêed of the game up-
date by broadcasting.

.. Handling collisions

Treating collisions between game objects is straightforward, except for a few subtle
details. e basic principle is to check every couple of objects for collisions and
handle side effects with respect to object type. In Spacewar, all ships would check
if a collision occurred with any other ship, bullet, planet, bonus, etc. Obviously a
collision is symmetrical, meaning we only have to check half of the couples. Once a
collision is detected side effects are applied. If a collision occurred between a ship
and abullet for example, the shipwould explode and the bulletwould enter its dead
state. Both would not be able to collide with another object anymore. On the other
hand, if a ship collided with a planet, the ship would still explode but the planet
would be unaffected. Processing side effects from a collision at the same time for
both colliding objects is clearer, since all effects from the collision are in one place.
It is also easier than having objects handle the collision themselves, where issues
related to the absence of atomicity arise.

Accurately checking for collisions between two objects often requires solving
equations, which can be quite costly depending on the shapes involved. Accuracy
can be traded for speed by using approximated equations. An uncompromising
speedup can be obtained by only checking collisions between nearby objects. To
group objects by proximity, any form of spatial hashing can be used. Spacewar
elected the spatial grid approach, as it is straightforward and êt to the d rectan-
gular map. e map is divided into same-sized regions at its creation (see êgure
). During the update loop, when objects are moved, they are inserted in all re-
gions they overlap with. Collisions are then only checked between objects belong-
ing to the same region. Due to the toric nature of themap, the spatial grid has to be
toric too. Objects near themap edges can lie in grid regions adjacent only by wrap-
ping around. Collision checks thus have towork on parts rather thanwhole objects.
Other optimizations rely on ensuring game objects are tangible before diving into
costly computations.



.

.Map

Figure : e map is divided into same-sized cells and collisions are checked only
for objects belonging to the same cell. Objects are inserted into all cells they overlap
with. Here the two blue planets are inserted in all cells êlled with blue.

 Future improvements

In the current state, Spacewar is playable, enjoyable and rather stable. However,
there is still room for improvement. On the short term,wewould like to allowclients
to launch games and invite friends in it. e envisioned scheme is the following: af-
ter landingon theSpacewarhomepage, theclientwouldbegreetedwith twochoices
of playing straight away, and creating a new game. Playing straight away would
jump the client into a randomly determined active game. e client could also ex-
press wishes on its playing preferences, like specifying the maximum number of
player in the game, the density of planets, the map dimensions and so on. ose
wishes would narrow the search for an active game to join. Alternatively, were the
client to choose to create a new game, hewould be prompted formore in-depth set-
tings, similar to those currently present in the preferences êle. He would be able to
set themaximumnumber of players allowed in the game, themap dimensions, the
density of planets and satellites, but also the allowed bonuses and bonuses timing.
Eventually, he should be able to tweak the game settings so much that the created
game would have a unique quality to it. Once he is satisêed with these settings, the
client can start the game. An active game would have a unique  attached to it.
e client who created the game should forward this  to all the players he wants
to spar with. Upon accessing this , those players would immediately join the
action.

On the technical side, this scheme of having multiple games running concur-
rently would be interesting to implement. ismight need somemore thought, but
at this time we envision to have a delegated  server program running in front
of themultiple Spacewar games, forwarding themessages from clients to dedicated



game processes, depending on the access . is program would thus act simi-
larly to a reverse proxy.

In order to allow at least a dozen of those games concurrently running on the
samemachine, each game hosting from a handful to potentially ten or twenty play-
ers, the serverprogramneeds toonly consumea fractionof themachine’s resources.
Otherwise the hardware costs to support even a hundred concurrent players will
quickly rise to the unaffordable level. Consequently, optimization in the server is
another short term goal. is optimization should focus on scaling resource us-
age with the number of game objects. It goes without saying that optimizing client
drawing is another priority. e game is currently rather demanding, even though
thegraphics arebare. is is due inpart to the immaturity of implementationsof the
canvas rendering context in current web browsers. Nonetheless, there are certainly
ways to fasten the rendering loop without waiting for optimizations on browsers to
happen.

Other priorities, on a longer term, are the compatibility and stability of both
client and server programs. For example, every browser handle input a different
way: we need to account for this fact. e goal is to provide a similar experience
on all supported browsers. Particularities in each browsermakes this a challenging
task. For instance, Firefox does anti-aliasing on the canvas element, while Chrome
does not. is translates into the impossibility to specify sub-pixel coordinates to
draw at when using Chrome. Since anti-aliasing is not part of the canvas element
speciêcation and delegated to implementers, we have to accommodate these pe-
culiarities.

More gameplay-oriented features are planned as well: more bonuses, single-
player action, and someway of tracking progress inmultiplayermatches. Wemight
also consider making the client compatible with touch devices, both to widen the
audience and to learn how to interact with those devices in a web setting.

Be it a new language, an experimental library, a novel algorithm, learning has
always been the strongest motivation to take on this project. We picked up quite
a few skills along the road, and will continue to do so until we run out of ideas to
improve Spacewar. en we will acknowledge of the game maturity, rest a while,
andmove on to another project, ready to learn anew.

References

[] Jeremy Ashkenas. CoffeeScript. . : http://coffeescript.org/.

[] Huned Botee et al. Lazeroids. . : http://www.lazeroids.com/.

[] Ryan Dahl.Node.js. . : http://nodejs.org/.



http://coffeescript.org/
http://www.lazeroids.com/
http://nodejs.org/

[] Ian Fette.eWebsocket Protocol Standards Draft. . : http://tools.iet
f.org/html/draft-ietf-hybi-thewebsocketprotocol-07.

[] Rob Hawkes. Rawkets. . : http://www.rawkets.com/.

[] Ian Hickson. HTML Living Standard: the Canvas Element. . : http://
www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-el
ement.html.

[] Ian Hickson.eWebSocket API. . : http://dev.w3.org/html5/websoc
kets/.

[] Brandon Jones. Quake  WebGL Demo. . : http://media.tojicode.co
m/q3bsp/.

[] Salvatore Loreto et al. Known Issues and Best Practices for Long Polling. .
: http://tools.ietf.org/html/rfc6202.

[] Chris Marrin.WebGL Speciêcation. . : http://www.khronos.org/regis
try/webgl/specs/latest/.

[] Chris Milk. ROME, ” dreams of black”. . : http://www.ro.me/.

[] Jonathan Musther and Bart Mak. Slingshot. . : http://slingshot.wikis
pot.org/.

[] Guillermo Rauch. Socket.IO. . : http://socket.io/.

[] Ivo Wetzel and Zhang Yi Jiang. JavaScript Garden. . : http://bonsaide
n.github.com/JavaScript-Garden/.



http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-07
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-07
http://www.rawkets.com/
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/websockets/
http://media.tojicode.com/q3bsp/
http://media.tojicode.com/q3bsp/
http://tools.ietf.org/html/rfc6202
http://www.khronos.org/registry/webgl/specs/latest/
http://www.khronos.org/registry/webgl/specs/latest/
http://www.ro.me/
http://slingshot.wikispot.org/
http://slingshot.wikispot.org/
http://socket.io/
http://bonsaiden.github.com/JavaScript-Garden/
http://bonsaiden.github.com/JavaScript-Garden/

	Rationale
	Founding technologies
	html5 standard
	JavaScript
	Canvas element
	WebSocket

	Node

	Other works
	Inner workings
	Overview
	The game's rules and goal
	The decentralized prototype

	Client side
	The rendering algorithm
	Drawing infinity � and beyond
	Rendering performance

	Server side
	Client-server communication
	Setting up the game map
	The update loop
	Handling collisions

	Future improvements

